2,251 research outputs found

    Blow up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/Phase-Field system in R^2

    Full text link
    We find explicit solutions to both the Oldroyd-B model with infinite Weissenberg number and the coupled Navier-Stokes/Phase-Field system. The solutions blow up in finite time.Comment: 5 page

    6-Chloro-3-nitro-N-(propan-2-yl)pyridin-2-amine

    Get PDF
    There are two mol­ecules in the asymmetric unit mol­ecule of the title compound, C8H10ClN3O2. Intra­molecular N—H⋯O hydrogen bonds stabilize the mol­ecular structure. There are no classical inter­molecular hydrogen bonds in the crystal structure

    Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons

    Full text link
    We consider the decoherence of photons suffering in phase-damping channels. By exploring the evolutions of single-photon polarization states and two-photon polarization-entangled states, we find that different frequency spectrum envelopes of photons induce different decoherence processes. A white frequency spectrum can lead the decoherence to an ideal Markovian process. Some color frequency spectrums can induce asymptotical decoherence, while, some other color frequency spectrums can make coherence vanish periodically with variable revival amplitudes. These behaviors result from the non-Markovian effects on the decoherence process, which may give rise to a revival of coherence after complete decoherence.Comment: 7 pages, 4 figures, new results added, replaced by accepted versio

    Small morphology variations effects on plasmonic nanoparticle dimer hotspots

    Get PDF
    Plasmonic nanoparticle (NP) dimer structures, forming highly intense areas of field enhancement called hotspots, have been the focus of extensive investigations due to their phenomenal light manipulating abilities. However, the actual morphology of the NP hotspot is usually distinct from the ideal nanosphere dimer model. In this study, we demonstrate numerically that small morphology variations in the presence of nanobridge, nanocrevice, nanofacet or nanoroughness, can have a major impact on the plasmonic properties of the whole system. The resonance wavelength and magnitude of the near-field enhancement are found to acutely depend on the interparticle gap geometry. The hotspot may become degenerated or regenerated. We also observe that the hybridized modes excited under longitudinal polarizations, including the bonding dipole plasmon (BDP) and charge transfer plasmon (CTP) modes, can be assigned to the bonding longitudinal antenna plasmon (LAP) modes for all gap geometries. These results provide means to understand and justify the ongoing poor reproducibility of surface enhanced Raman scattering (SERS) substrates, stressing the importance of precision plasmonics

    An efficient DNA isolation method for tropical plants

    Get PDF
    Due to interfering components such as polysacharrides, polyphenols, etc, DNA isolation from tropical plants had been challenging. We developed a safe, universal and efficient DNA extraction method, which yielded high-quality DNA from 10 tropical plants including cassava, rubber tree, banana, etc. In the extraction buffer, 2 M NaCl was used to provide a high ionic strength reaction environment, ethylenediaminetetraacetic acid (EDTA), lauroyl sarcosine (LSS) and cetyl trimethyl ammonium bromide (CTAB) could inhibit DNase activity effectively, polyvinylpolypyrrolidone (PVPP) produced a deoxidized reaction environment, and borax enhanced the precipitation of interfering compounds. Ordinary reagents like β-mercaptoethanol, chloroform and phenol were unnecessary in this protocol, which made it safe and friendly to use. PCR and EcoR I enzyme restriction digestion results show that the obtained DNA is good enough for downstream analysis. In conclusion, this protocol is expected to be a preferable DNA extraction protocol for tropical plants.Keywords: DNA extraction, tropical plants, cetyl trimethyl ammonium bromide (CTAB)African Journal of Biotechnology Vol. 12(19), pp. 2727-273

    Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

    Get PDF
    Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation

    Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neural tissue has limited potential to self-renew after neurological damage. Cell therapy using BM-MSCs (bone marrow mesenchymal stromal cells) seems like a promising approach for the treatment of neurological diseases. However, the neural differentiation of stem cells influenced by massive factors and interactions is not well studied at present.</p> <p>Results</p> <p>In this work, we isolated and identified MSCs from mouse bone marrow. Co-cultured with CART (0.4 nM) for six days, BM-MSCs were differentiated into neuron-like cells by the observation of optical microscopy. Immunofluorescence demonstrated that the differentiated BM-MSCs expressed neural specific markers including MAP-2, Nestin, NeuN and GFAP. In addition, NeuN positive cells could co-localize with TH or ChAT by double-labled immunofluorescence and Nissl bodies were found in several differentiated cells by Nissl stain. Furthermore, BDNF and NGF were increased by CART using RT-PCR.</p> <p>Conclusion</p> <p>This study demonstrated that CART could promote the differentiation of BM-MSCs into neural cells through increasing neurofactors, including BNDF and NGF. Combined application of CART and BM-MSCs may be a promising cell-based therapy for neurological diseases.</p
    corecore